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Abstract. The issues related to the integrability of quantum Calogero–Moser models based on any
root systems are addressed. For the models with degenerate potentials, i.e. the rational with/without
the harmonic confining force, the hyperbolic and the trigonometric, we demonstrate the following
for all the root systems. (i) Construction of a complete set of quantum conserved quantities in
terms of a total sum of the Lax matrix L, i.e.

∑
µ,ν∈R(L

n)µν , in which R is a set of R
r vectors

invariant under the action of the Coxeter group. They form a single Coxeter orbit. (ii) Proof
of Liouville integrability. (iii) Triangularity of the quantum Hamiltonian and the entire discrete
spectrum. Generalized Jack polynomials are defined for all root systems as unique eigenfunctions
of the Hamiltonian. (iv) Equivalence of the Lax operator and the Dunkl operator. (v) Algebraic
construction of all excited states in terms of creation operators. These are mainly generalizations
of the results known for the models based on the A series, i.e. su(N)-type, root systems.

1. Introduction

Calogero–Moser models are one-dimensional dynamical systems with long-range interactions
having the remarkable property that they are integrable at both classical and quantum levels.
In fact the integrability or more precisely the triangularity of the quantum Hamiltonian was
first discovered by Calogero [1] for the model with inverse square potential plus a confining
harmonic force and by Sutherland [2] for the particles on a circle with the inverse square
potential. Later classical integrability of the models in terms of Lax pairs was proved by
Moser [3]. Olshanetsky and Perelomov [4] showed that these models were based on Ar root
systems and generalizations of the models based on other root systems including the non-
crystallographic ones were introduced [5].

In this paper we discuss quantum Calogero–Moser models with degenerate potentials, that
is the rational with/without harmonic force, the hyperbolic and the trigonometric potentials
based on all root systems. We demonstrate, based on previous works on universal Lax pairs
for classical [6–8] and quantum models [9], that various results known for the quantum Ar
models can be generalized to the models based on any root systems as well. They are the
following. (i) Construction of a complete set of quantum conserved quantities in terms of
quantum Lax pairs and other methods. (ii) Universal proof of Liouville integrability for the
rational, hyperbolic and trigonometric potential models. Namely, the quantum conserved
quantities commute among themselves. (iii) Triangularity of the quantum Hamiltonian is
demonstrated explicitly for all the models. In other words, the Hamiltonian is shown, in
certain bases, to be decomposed into a sum of finite-dimensional triangular matrices. Thus any
eigenvalue equation can be solved by finite steps of linear algebraic processes only. This also
gives the entire discrete spectrum of the models. As unique eigenfunctions of the Hamiltonian,
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generalization of Jack polynomials and multivariable Laguerre (Hermite) polynomials are
defined for all root systems. (iv) Equivalence of the quantum Lax pair method and that of so-
called differential-reflection (Dunkl) operators [10] is demonstrated. (v) For rational models
with harmonic confining force, an algebraic construction of all excited states in terms of
creation (annihilation) operators is achieved.

For the Ar models, the Lax pairs, conserved quantities and their involution have
been discussed by many authors with varying degrees of completeness and rigour (see,
e.g., [5, 11–20]). Point (iv) was shown by Wadati and collaborators [18] and point (v) was
initiated by Perelomov [12] and developed by Brink and collaborators [17] and Wadati and
collaborators [18]. A rather different approach by Heckman and Opdam [21,22] to Calogero–
Moser models with degenerate potentials based on any root systems should also be mentioned
in this connection.

For the general background and the motivations of this series of papers and the physical
applications of the Calogero–Moser models with various potentials to lower-dimensional
physics, ranging from solid state to particle physics and supersymmetric Yang–Mills theory,
we refer to our previous papers [6, 7] and references therein.

This paper is organized as follows. In section 2, the quantum Calogero–Moser Hamiltonian
with degenerate potentials is introduced as a factorized form (2.5). Connection with root
systems and the Coxeter invariance is emphasized. Some rudimentary facts of the root systems
and reflections are summarized in appendix A. A universal Coxeter invariant ground state
wavefunction together with its energy eigenvalue are presented. In section 3 we show that all
the excited states are also Coxeter invariant and that the Hamiltonian is triangular in certain
bases. Complete sets of quantum conserved quantities are derived from the quantum Lax
operator L in section 4. Instead of the trace, the total sum of Ln is conserved. That is
Ts(Ln) = ∑

µ,ν∈R(L
n)µν , in which R is a set of R

r vectors invariant under the action of the
Coxeter group. They form a single Coxeter orbit. The details of the complete set for each root
system are given in appendix B. In section 5 the creation and annihilation operators for the
rational models with harmonic force are derived. In section 6, the equivalence of the Lax pair
operator formalism and the so-called differential-reflection (Dunkl) operators is demonstrated
and the quantum conserved quantities are expressed in terms of the latter. In section 7
an algebraic construction of excited states in terms of the differential-reflection (Dunkl)
operators for rational models with harmonic force is presented. The complete sets of explicit
eigenfunctions for the rank two models are derived in terms of separation of variables based on
the Coxeter invariant variables. Section 8 gives a universal proof of the Liouville integrability
for models with rational (without the confining force), hyperbolic and trigonometric potentials.
For rational models with harmonic force, the involution is demonstrated for those based on
classical root systems. A simple use of the quantum Lax pair with a spectral parameter is
mentioned. The final section is for a summary and comments.

2. Quantum Calogero–Moser models

In this section we briefly introduce the quantum Calogero–Moser models along with
appropriate notation and background for the main body of this paper. A Calogero–Moser
model is a Hamiltonian system associated with a root system 
 of rank r , which is a set of
vectors in R

r with its standard inner product. A brief review of the properties of the root
systems and the associated reflections will be found in appendix A.
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2.1. Factorized Hamiltonian

The dynamical variables of the Calogero–Moser model are the coordinates {qj } and their
canonically conjugate momenta {pj }, with the canonical commutation relations

[qj , pk] = iδjk [qj , qk] = [pj , pk] = 0 j, k = 1, . . . , r. (2.1)

These will be denoted by vectors in R
r

q = (q1, . . . , qr) p = (p1, . . . , pr). (2.2)

The momentum operator pj acts as

pj = −i
∂

∂qj
j = 1, . . . , r.

As for the interactions we consider only the degenerate potentials, that is the rational
(with/without harmonic force), hyperbolic and trigonometric potentials:

V (ρ · q) =



1/(ρ · q)2 type I
a2/sinh2 a(ρ · q) type II ρ ∈ 

a2/sin2 a(ρ · q) type III

(2.3)

in which a is an arbitrary real positive constant, determining the period of the trigonometric
potentials. They imply integrability for all of the Calogero–Moser models based on the
crystallographic root systems. Those models based on the non-crystallographic root systems,
the dihedral group I2(m),H3 andH4, are integrable only for the rational potential. The rational
potential models are also integrable if a confining harmonic potential

1
2ω

2q2 ω > 0 type V (2.4)

is added to the Hamiltonian. Since we will discuss the universal properties and solutions
applicable to all the interaction types as well as those for specific interaction potentials, let us
adopt the conventional nomenclature for them. We call the models with rational, hyperbolic,
trigonometric and rational with harmonic force the type I, II, III and V models, respectively.
(Type IV models have elliptic potentials, which we will not discuss in this paper.)

The Hamiltonian for the quantum Calogero–Moser model can be written in a ‘factorized
form’:

H = 1

2

r∑
j=1

(
pj − i

∂W

∂qj

)(
pj + i

∂W

∂qj

)
(2.5)

= 1

2

r∑
j=1

(
p2
j +

(
∂W

∂qj

)2
)

+
1

2

r∑
j=1

∂2W

∂q2
j

(2.6)

= 1

2
p2 +

1

2

∑
ρ∈
+

g|ρ|(g|ρ| − 1)|ρ|2 V (ρ · q) +

(
ω2

2
q2

)
− E0. (2.7)

It should be noted that the above factorized Hamiltonian (2.7) consists of an operator part Ĥ,
which is the Hamiltonian in the usual definition, and a constant E0, which is the ground state
energy to be discussed later:

H = Ĥ − E0 (2.8)

Ĥ = 1

2
p2 +

1

2

∑
ρ∈
+

g|ρ|(g|ρ| − 1)|ρ|2 V (ρ · q) +

(
ω2

2
q2

)
. (2.9)

The real positive coupling constants g|ρ| are defined on orbits of the corresponding Coxeter
group, i.e. they are identical for roots in the same orbit. That is, for the simple Lie algebra cases
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Table 1. Functions appearing in the Lax pair and superpotential.

Potential Type w(u) x(u) y(u)

Rational I and V u 1/u −1/u2

Hyperbolic II sinh au a coth au −a2/ sinh2 au

Trigonometric III sin au a cot au −a2/ sin2 au

there is one coupling constant g|ρ| = g for all roots in simply laced models and two independent
coupling constants, g|ρ| = gL for long roots and g|ρ| = gS for short roots, in non-simply laced
models. For the I2(m) models, there is one coupling if m is odd, and two independent ones if
m is even. Let us call them ge for even roots and go for odd roots. Throughout this paper we
consider the coupling constants at generic values. We parametrize the positive roots of I2(m)

as

ρj = (cos((j − 1)π/m), sin((j − 1)π/m)) j = 1, . . . , m. (2.10)

The H3 and H4 models have one coupling constant g|ρ| = g, since these root systems are
simply laced. It should be noted that the operator part of the Hamiltonian Ĥ is strictly positive
for g|ρ| � 1, which we will assume throughout this paper for simplicity of the arguments.

The simplest way to introduce the factorized form is through supersymmetry [9, 23], in
which function W is called a superpotential:

W(q) =
∑
ρ∈
+

g|ρ| ln |w(ρ · q)| +
(
−ω

2
q2
)

g|ρ| > 0 ω > 0. (2.11)

The potential V (u) (2.3) and the function w(u) are related by

y(u) ≡ d

du
x(u)

dw(u)

du

/
w(u) ≡ x(u) (2.12)

V (u) = −y(u) = x2(u) + a2 ×




0 rational

−1 hyperbolic

1 trigonometric.

(2.13)

Table 1 gives these functions for each potential.
For proofs that the factorized Hamiltonian (2.6) actually gives the quantum

Hamiltonian (2.7) for all the root systems and potentials see [5, 9, 11]. It is easy to verify
that, for any potential V (u), the Hamiltonian is invariant under reflection of the phase space
variables in the hyperplane perpendicular to any root

H(sα(p), sα(q)) = H(p, q) ∀α ∈ 
 (2.14)

with sα defined by (A.2).
Some remarks are in order. For all of the root systems and for any choice of potential (2.3),

the Calogero–Moser model has a hard repulsive potential ∼1/(α · q)2 near the reflection
hyperplane Hα = {q ∈ R

r , α · q = 0}. The strength of the singularity is given by the
coupling constant g|α|(g|α| − 1), which is independent of the choice of the normalization
of the roots. (Thus for rational models with/without harmonic force there is equivalence,
A2

∼= I2(3), B2
∼= I2(4), G2

∼= I2(6), Br
∼= Cr

∼= BCr .) This determines the form of the
ground state wavefunction, as we will see in section 2.2. This repulsive potential is classically
insurmountable. Thus the motion is always confined within one Weyl chamber. This feature
allows us to constrain the configuration space to the principal Weyl chamber ((: the set of
simple roots, see appendix A)

PW = {q ∈ R
r | α · q > 0, α ∈ (} (2.15)
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without loss of generality. In the case of the trigonometric potential, the configuration space
is further limited due to the periodicity of the potential to

PWT = {q ∈ R
r |α · q > 0, α ∈ (,αh · q < π/a} (2.16)

where αh is the highest root.
The fact that the classical motions are confined in the Weyl chamber (alcove) PW(PWT)

does not necessarily mean that the corresponding quantum wavefunctions vanish identically
outside the region. On the contrary, as we will see soon, the ground state wavefunction
(section 2.2) and all the other excited state wavefunctions (section 3) are Coxeter invariant,
reflecting the Coxeter invariance of the Hamiltonian (2.14). In the early years of Calogero–
Moser models in which those based on theAr root system were mainly discussed, these Coxeter
invariant solutions were considered as totally symmetric states of bosonic systems. We will
not, however, adopt this interpretation, for in the models based on the other root systems the
reflection is not the same as particle interchange. The quantum theory we are discussing is the
so-called first quantized theory. That is, the notions of identical particles and the associated
statistics are non-existent.

2.2. Ground state wavefunction and energy

One merit of the factorized Hamiltonian (2.5) is the ease of derivation of the ground state
wavefunction and of the Hamiltonian (3.3) derived by the similarity transformation in terms
of the ground state wavefunction. Supersymmetric formulation of the Calogero–Moser
models [9,16,23] provides a natural setting for the introduction of the factorized Hamiltonian.
The universal ground state wavefunction is

*0(q) = eW(q) =
∏
ρ∈
+

|w(ρ · q)|g|ρ| e− ω
2 q

2
. (2.17)

The exponential factor e− ω
2 q

2
exists only for the rational potential case with the harmonic

confining force. It is easy to see that it is an eigenstate of the Hamiltonian (2.5) with zero
eigenvalue:

H*0(q) = 1

2

r∑
j=1

(
pj − i

∂W

∂qj

)(
pj + i

∂W

∂qj

)
*0(q) = 0 (2.18)

since it satisfies(
pj + i

∂W

∂qj

)
eW(q) = 0 j = 1, . . . , r. (2.19)

By using the decomposition of the factorized Hamiltonian into the operator Hamiltonian (2.9)
and a constant, we obtain

Ĥ eW ≡
(

1

2
p2 +

1

2

∑
ρ∈
+

g|ρ|(g|ρ| − 1)|ρ|2 V (ρ · q) +

(
ω2

2
q2

))
eW = E0 eW. (2.20)

In other words, the above solution (2.17) provides an eigenstate of the Hamiltonian operator Ĥ
with energy E0. The fact that it is a ground state (for type I, III and V) can be easily shown within
the framework of the supersymmetric model [9] thanks to the positivity of the supersymmetric
Hamiltonian. It should be stressed that E0 is determined purely algebraically [9], without really
applying the operator on the left-hand side of (2.20) to the wavefunction. This type of ground
state has been known for some time. It is derived by various methods, see for example [3, 5],
and also by using supersymmetric quantum mechanics for the models based on classical root
systems [16, 23].
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The ground state energy for the rational potential cases is

E0 =




0 type I

ω

(
r

2
+
∑
ρ∈
+

g|ρ|

)
type V. (2.21)

The same for the hyperbolic and trigonometric potential cases is

E0 = 2a2+2 ×
{

−1 hyperbolic

1 trigonometric
(2.22)

in which

+ = 1
2

∑
ρ∈
+

g|ρ|ρ (2.23)

can be considered as a ‘deformed Weyl vector’ [5, 22]. Again these formulae are universal,
that is, they apply to all of the Calogero–Moser models based on any root systems. A negative
E0 for the obviously positive Hamiltonian of the hyperbolic potential model indicates that the
interpretation of eW as an eigenfunction is not correct. This function diverges as |q| → ∞ for
the hyperbolic and the rational potential cases, destroying the hermiticity of the Hamiltonian.
Obviously we have∫

PW (PWT)

e2W(q) dq =
{

∞ : type I and II

finite: type III and V
(2.24)

in which PW and PWT denote that the integration is over the regions defined in (2.15) and (2.16).
Naturally, most existing results in quantum Calogero–Moser models are for the models with
trigonometric potential and the rational potential with harmonic force, which have normalizable
states and discrete spectra.

It should be remarked that the domain of the universal ground state wavefunction*0 could
be considered as the entire R

r space except for the points on the reflection hyperplanes, that is
the disjoint union of all the Weyl chambers (alcoves), instead of the initial Weyl chamber/alcove
(PW, PWT) in which the classical motions are restricted due to the singular potential. In fact,
*0 and W are characterized as Coxeter invariant:

šρ*0 = *0 šρW = W ∀ρ ∈ 
 (2.25)

in which šρ is the representation of the reflection in the function space. For an arbitrary function
f of q, its action is defined by

(šρf )(q) = f (sρ(q)). (2.26)

This definition can be generalized to the entire Coxeter group G
: for an arbitrary element g
of G
, ǧ is defined by

(ǧf )(q) = f (g−1(q)) ∀g ∈ G
. (2.27)

In the rest of this paper we discuss mainly the type III and V models which have normalizable
states and discrete spectra.

3. Coxeter invariant excited states, triangularity and spectrum

In this section we show that all the excited state wavefunctions are Coxeter invariant, too. In
other words, the Fock space consists of Coxeter invariant functions only. With the knowledge
of the ground state wavefunction eW, the other states of the Calogero–Moser models can be



Quantum Calogero–Moser models: integrability for all root systems 9039

easily obtained as eigenfunctions of a differential operator H̃ obtained from H by a similarity
transformation:

H̃ = e−W H eW = e−W

(
1

2
p2 +

1

2

∑
ρ∈
+

g|ρ|(g|ρ| − 1)|ρ|2 V (ρ · q) +

(
ω2

2
q2

)
− E0

)
eW (3.1)

H̃-λ = λ-λ ⇐⇒ H-λ eW = λ-λ eW. (3.2)

Thanks to the factorized form of the Hamiltonian H (2.5), (2.6), the transformed Hamiltonian
H̃ takes a simple form:

H̃ = −1

2

r∑
j=1

(
∂2

∂q2
j

+ 2
∂W

∂qj

∂

∂qj

)
. (3.3)

The Coxeter invariance of W implies those of H and H̃:

šρHšρ = H šρH̃šρ = H̃ ∀ρ ∈ 
. (3.4)

For type V and III models we introduce proper bases of Fock space consisting of Coxeter
invariant functions and show that the above Hamiltonian H̃ (3.3) is triangular in these bases.
This establishes the integrability of the type V and III models universally† and also gives the
entire spectrum of the Hamiltonian (see (3.12), (3.13) and (3.44)).

3.1. Rational potential with harmonic force

First, let us determine the structure of the set of eigenfunctions of the transformed Hamiltonian
H̃, for the type V models:

H̃ = ω q · ∂
∂q

− 1

2

r∑
j=1

∂2

∂q2
j

−
∑
ρ∈
+

g|ρ|
ρ · q ρ · ∂

∂q
. (3.5)

Obviously a constant and ωq2 − E0/ω are its eigenfunctions with eigenvalue 0 and 2ω,
respectively. Let us suppose that a polynomial P(q) is an eigenfunction of H̃:

H̃P(q) = λP (q). (3.6)

Due to the Coxeter invariance of H̃ (3.4), we know that šρP together with the difference

Q = (1 − šρ)P

are also eigenfunctions with the same eigenvalue:

H̃Q(q) = λQ(q) (3.7)

if the latter is not identically zero. Since Q is a polynomial which is odd under reflection šρ

šρQ(q) = −Q(q)
it can be factorized as

Q(q) = (ρ · q)2n+1Q̃(q) Q̃|ρ·q=0 �= 0 (3.8)

with a non-negative integer n and a polynomial Q̃. By substituting (3.8) into (3.7) and using
the explicit form of H̃ near the reflection hyperplane ρ · q = 0, we obtain

−(ρ · q)2n−1(2n + 1)(n + g|ρ|)ρ2Q̃ + O[(ρ · q)2n] = λ(ρ · q)2n+1Q̃ (3.9)

† Triangularity of the Ar type V and III Hamiltonians was noted in the original papers of Calogero [1] and
Sutherland [2]. That of rank two models in the Coxeter invariant bases was shown in [22, 24].
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Table 2. The degrees fj in which independent Coxeter invariant polynomials exist.


 fj = 1 + ej 
 fj = 1 + ej

Ar 2, 3, 4, . . . , r + 1 E8 2, 8, 12, 14, 18, 20, 24, 30
Br 2, 4, 6, . . . , 2r F4 2, 6, 8, 12
Cr 2, 4, 6, . . . , 2r G2 2, 6
Dr 2, 4, . . . , 2r − 2; r I2(m) 2,m
E6 2, 5, 6, 8, 9, 12 H3 2, 6, 10
E7 2, 6, 8, 10, 12, 14, 18 H4 2, 12, 20, 30

which would imply the vanishing of Q̃ on the reflection hyperplane

Q̃|ρ·q=0 = 0

an obvious contradiction. Thus we are led to the conclusion that the eigenfunctions are Coxeter
invariant polynomials and that the Hamiltonian H (3.5) maps one Coxeter invariant polynomial
to another.

An obvious basis in the space of Coxeter invariant polynomials is the homogeneous
polynomials of various degrees. This basis has a natural order given by the degree. For a
given degree the space of homogeneous Coxeter invariant polynomials is finite dimensional.
The explicit form of H̃ (3.5) shows that it is lower triangular in this basis and the diagonal
elements areω×degree as given by the first term. Independent Coxeter invariant polynomials
exist at the degrees fj listed in table 2:

fj = 1 + ej j = 1, . . . , r (3.10)

in which {ej }, j = 1, . . . , r , are the exponents of 
. Let us denote them by

z1(q), . . . , zr (q) zj (κq) = κfj zj (q). (3.11)

Thus we arrive at: the quantum Calogero–Moser model with the rational potential and
the harmonic confining force is algebraically solvable for any (crystallographic and non-
crystallographic) root system 
. The spectrum of the operator Hamiltonian Ĥ is

ωN + E0 (3.12)

with a non-negative integer N , which can be expressed as

N =
r∑
j=1

njfj nj ∈ Z+ (3.13)

and the degeneracy of the above eigenvalue (3.12) is the number of different solutions of (3.13)
for given N . This is a generalization of Calogero’s original argument for the Ar model [1] to
the models based on arbitrary root systems. Now let us denote by �N the set of non-negative
integers in (3.13):

�N = (n1, n2, . . . , nr) (3.14)

and by φ �N(q) the homogeneous Coxeter invariant polynomial determined by �N and the above
basis {zj } (3.11):

φ �N(q) =
r∏
j=1

z
nj
j (q). (3.15)

As shown above, there exists a unique eigenstate ψ �N(q) for each φ �N(q):

ψ �N(q) = φ �N(q) +
∑
�N ′< �N

d �N ′φ �N ′(q) d �N ′ : const (3.16)

H̃ψ �N(q) = ωNψ �N(q). (3.17)
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This satisfies the orthogonality relation

(ψ �N, φ �N ′) = 0 �N ′ < �N (3.18)

with respect to the inner product in PW:

(ψ, ϕ) =
∫

PW
ψ∗(q)ϕ(q) e2W(q) dq. (3.19)

These polynomials {ψ �N(q)} are generalizations of the multivariable Laguerre (Hermite)
polynomials [14] known for the Ar (Br , Dr ) root systems to arbitrary root systems.

Some remarks are in order.

(1) There is no Coxeter invariant linear function in q. The quadratic invariant polynomial
q2 = q · q exists in all the root systems. This corresponds to the universal fact that
f1 = 2, (e1 = 1) for all the root systems. Moreover, this is related to the fact that a special
sub-series of the excited states with N = 2n1 = n1f1, nj = 0, j � 2, can be expressed
universally in terms of Laguerre polynomials in q2. This will be discussed at the end of
section 5 and in section 7.2.

(2) The other Coxeter invariants corresponding to the degrees f2, . . . , fr could be interpreted
as special ‘angular’ variables of a unit sphere Sr−1 (q2 = 1), with the first Coxeter invariant√
q2 being the radial coordinate. These would provide proper variables for describing

solutions. Solutions in terms of separation of variables are in general possible only for the
simplest cases, that is the rank two models, which will be demonstrated in section 7.3.

(3) For
 = A1, the simplest root system of rank one, the Hamiltonian H̃ can be rewritten in
terms of a Coxeter invariant variable u = ωq2 as

H̃ = ωq
d

dq
− 1

2

d2

dq2
− g

q

d

dq
= −2ω

{
u

d2

du2
+

(
g +

1

2
− u

)
d

du

}
. (3.20)

The Laguerre polynomial satisfying the differential equation{
u

d2

du2
+

(
g +

1

2
− u

)
d

du
+ n

}
L
(g− 1

2 )
n (u) = 0 (3.21)

provides an eigenfunction with eigenvalue 2ωn, which corresponds to the eigenvalue
2ωn + E0 of Ĥ. This is a well known result.

3.2. Trigonometric potential

Here we consider those root systems associated with Lie algebras. In order to determine the
excited states of the type III models, we have to consider the periodicity. The superpotential
W and the Hamiltonian H are invariant under the following translation:

W(q ′) = W(q) H(p, q ′) = H(p, q) q ′ = q + l∨π/a (3.22)

in which l∨ is an element of the dual weight lattice, that is

l∨ =
r∑
j=1

lj
2

α2
j

λj lj ∈ Z αj ∈ ( α∨
j · λk = δjk. (3.23)

As is well known in quantum mechanics with periodic potentials, the wavefunctions
diagonalizing the translation operators are expressed as

e2iaµ·q
( ∑
α∈L(
)

bαe2iaα·q
)

eW bα: const L(
): root lattice (3.24)
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in which a vector µ ∈ R
r is as yet unspecified. In other words, up to the overall phase factor

e2iaµ·q , this is a Fourier expansion in terms of the simple roots.
Let PT(q) be a polynomial in e±2iaαj ·q , αj ∈ ( and suppose that a function φ(q)

φ(q) = e2iaµ·qPT(q) µ ∈ R
r (3.25)

is an eigenfunction of H̃:

H̃φ(q) = λφ(q) (3.26)

in which the explicit form of H̃ is given by

H̃ = −1

2

r∑
j=1

∂2

∂q2
j

− a
∑
ρ∈
+

g|ρ| cot (aρ · q)ρ · ∂
∂q
. (3.27)

As above, due to the Coxeter invariance of H̃ (3.4), we know that šρφ together with the
difference

ϕ = (1 − šρ)φ

are also eigenfunctions with the same eigenvalue:

H̃ϕ(q) = λϕ(q). (3.28)

Since ϕ is odd under reflection šρ

šρϕ(q) = −ϕ(q)
it can be expressed as

ϕ(q) = (ρ · q)2n+1ϕ̃(q) + O[(ρ · q)2n+3] ϕ̃|ρ·q=0 �= 0 (3.29)

in a neighbourhood of the reflection hyperplaneρ·q = 0. In this neighbourhood, the singularity
structure of H̃ for the trigonometric potential is the same as that of H̃ for the rational potential
discussed in the previous section. Thus we obtain, as before, a contradiction ϕ̃|ρ·q=0 = 0. In
other words, the eigenfunction φ (3.25) must be Coxeter invariant. This in turn requires the
unspecified vector µ in (3.25) to be an element of the weight lattice

µ ∈ >(
). (3.30)

Since

šρφ(q) = e2ia sρ(µ)·q šρPT(q) = e2ia(µ·q−ρ∨·µρ·q)šρPT(q)

the condition

ρ∨· µ ∈ Z ∀ρ ∈ 
 (3.31)

is necessary, but not sufficient, for the Coxeter invariance of φ. Thus we arrive at (3.30).
Let us introduce a basis for the Coxeter invariant functions of the form (3.25). Let λ be a

dominant weight

λ =
r∑
j=1

mjλj mj ∈ Z+ (3.32)

and Wλ be the orbit of λ by the action of the Weyl group:

Wλ = {µ ∈ >(
)|µ = g(λ) ∀g ∈ G
}. (3.33)

We define

φλ(q) ≡
∑
µ∈Wλ

e2iaµ·q (3.34)
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which is Coxeter invariant. The set of functions {φλ} has an order >:

|λ|2 > |λ′|2 ⇒ φλ > φλ′ . (3.35)

Next we show that H̃ is lower triangular in this basis. By using (3.27) we obtain

H̃φλ = 2a2λ2φλ − 2ia2
∑
ρ∈
+

∑
µ∈Wλ

g|ρ| cot (aρ · q)(ρ · µ)e2iaµ·q . (3.36)

First let us fix one positive root ρ and a weight µ in Wλ such that ρ · µ �= 0. Then

µ′ ≡ sρ(µ) = µ− (ρ∨· µ)ρ ∈ Wλ ρ · µ′ = −ρ · µ. (3.37)

Without loss of generality we may assume

ρ∨· µ = k > 0 k ∈ Z. (3.38)

The contribution of the pair (µ,µ′) in the summation of (3.36) reads

|ρ · µ|e2aiµ·q(1 − e−2aikρ·q) cot(aρ · q) = i|ρ · µ|
(

e2aiµ·q + e2aiµ′ ·q + 2
k−1∑
j=1

e2ai(µ−jρ)·q
)

(3.39)

which is the generalization of Sutherland’s fundamental identity equation (15) in [2] to arbitrary
root systems. The summation in the expression corresponds to φλ′ with λ′ being lower than λ.
Thus (3.36) reads

H̃φλ = 2a2λ2φλ + 2a2
∑
ρ∈
+

∑
µ∈Wλ

g|ρ||ρ · µ|e2iaµ·q +
∑

|λ′|<|λ|
cλ′φλ′ (3.40)

in which {cλ′ } are constants. It is easy to see that (µ = g(λ), ∃g ∈ G
)∑
ρ∈
+

g|ρ||ρ · µ| =
∑
ρ∈
+

g|ρ||g(ρ) · λ| =
( ∑
ρ∈
+

g|ρ|ρ
)

· λ = 2+ · λ (3.41)

which is independent of µ. Thus we have demonstrated the triangularity of H̃:

H̃φλ = 2a2(λ2 + 2+ · λ)φλ +
∑

|λ′|<|λ|
cλ′φλ′ (3.42)

or that of Ĥ
ĤφλeW = 2a2(λ + +)2φλe

W +
∑

|λ′|<|λ|
cλ′φλ′eW (3.43)

with the eigenvalue

2a2(λ + +)2. (3.44)

In other words, for each dominant weight λ there exists an eigenstate of H̃ with eigenvalue
proportional to λ(λ + 2+). Let us denote this eigenfunction by ψλ(q):

ψλ(q) = φλ(q) +
∑

|λ|′<|λ|
dλ′φλ′(q) dλ′ : const (3.45)

H̃ψλ(q) = 2a2λ(λ + 2+)ψλ(q) (3.46)

and call it a generalized Jack polynomial [25–28]. It satisfies the orthogonality relation

(ψλ, φλ′) = 0 |λ|′ < |λ| (3.47)

with respect to the inner product in PWT:

(ψ, ϕ) =
∫

PWT

ψ∗(q)ϕ(q) e2W(q) dq. (3.48)
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In theAr model, specifying a dominant weight λ is the same as giving a Young diagram which
designates a Jack polynomial. It should be emphasized, however, that {ψλ} are not identical
to the Jack polynomials even for the Ar root systems, because of different treatments of the
centre of mass coordinates. Detailed properties of these polynomials for various root systems
will be published elsewhere.

Thus we arrive at the following.
The quantum Calogero–Moser models with the trigonometric potential are algebraically
solvable for any crystallographic root system
. The spectrum of the Hamiltonian Ĥ is given
by (3.44) in which λ is an arbitrary dominant weight. This is a generalization of Sutherland’s
original argument [2] to the models based on arbitrary root systems.

Some remarks are in order.

(1) The weights µ appearing in the lower-order terms {φλ′ } are those weights contained in the
Lie algebra representation belonging to the highest weight λ.

(2) As a simple corollary we find that for a minimal weight λ,

ψλ(q) = φλ(q) =
∑
µ∈Wλ

e2iaµ·q

is an eigenfunction of H̃. A minimal representation [6] consists of a single Weyl orbit and
all of its weights µ satisfy ρ∨· µ = 0,±1, ∀ρ ∈ 
.

(3) If λ = αh, the highest root of a simply laced root system, Wλ is the set of roots itself.
Then the lower-order terms are constants only. We find that

ψαh(q) = 2
∑
ρ∈
+

(cos (2aρ · q) + gρ2/αh · (αh + 2+))

is an eigenstate of H̃.
(4) If λ = αSh, the highest short root of a non-simply laced root system, Wλ is the set of short

roots itself. The lower-order terms are constants, too. Similarly as above, we find that

ψαSh(q) = 2
∑
ρ∈
L+

cos (2aρ · q) + 2
∑
ρ∈
S+

(cos (2aρ · q) + gSρ
2
S/αSh · (αSh + 2+))

is an eigenstate of H̃. Here 
L(S) is the set of long (short) roots.
(5) If −λ /∈ Wλ then there is another set of functions containing the weight −λwhich belongs

to the same eigenvalue.
(6) The Coxeter invariant trigonometric polynomials specified by the fundamental weights

{λj }
φλj (q) =

∑
µ∈Wλj

e2iaµ·q λj : fundamental weight j = 1, . . . , r (3.49)

are expected to play the role of the fundamental variables [22, 24].
(7) Let us consider the well known case 
 = A1, the simplest root system of rank one. By

rewriting the Hamiltonian H̃ in terms of the Coxeter invariant variable z = cos(aρq), we
obtain

Ĥ = −1

2

d2

dq2
− agρ cot(aρq)

d

dq
= −1

2
a2|ρ|2

{
(1 − z2)

d2

dz2
− (1 + 2g)z

d

dz

}
. (3.50)

The Gegenbauer polynomials [5], a special case of Jacobi polynomials P (α,β)n , provide
eigenfunctions

P
(g− 1

2 ,g− 1
2 )

n (cos(aρq)) E = a2|ρ|2(n + g)2/2 n ∈ Z+. (3.51)
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The Jacobi polynomial P (α,β)A (z) satisfies differential equation{
(1 − z2)

d2

dz2
+ (β − α − (2 + α + β)z)

d

dz
+ A(A + α + β + 1)

}
P
(α,β)

A (z) = 0. (3.52)

Here we follow the notation of [29]. They form orthogonal polynomials with weight
e2W = | sin(aρq)|2g in the interval q ∈ [0, π/aρ], (2.16). The Gegenbauer polynomials
have a definite parity, (−1)n, reflecting the periodicity. The fundamental period is π/aρ,
the length of the interval itself. The (odd-) even-degree ones corresponding to (half-odd)
integer spin representations are (anti-) periodic.

(8) Triangularity of type II models follows from the same algebraic reasoning.

4. Quantum Lax pair and quantum conserved quantities

Historically, Lax pairs for Calogero–Moser models were presented in terms of Lie algebra
representations [3, 5], in particular, the vector representation of the Ar models. However, the
invariance of Calogero–Moser models is that of the Coxeter group but not that of the associated
Lie algebra, which does not exist for the non-crystallographic root systems. Thus the universal
and Coxeter covariant Lax pairs are given in terms of the representations of the Coxeter group.

4.1. General case

Here we recapitulate the essence of the quantum Lax pair operators for the Calogero–Moser
models with degenerate potentials and without spectral parameter. The case with spectral
parameter will be discussed briefly in section 8.3 in connection with the proof of involution
of the quantum conserved quantities for the Ar model [15]. The quantum Lax pair in this
section applies to all the degenerate potential cases except for the case of the rational potential
with the harmonic force, which will be treated separately in section 4.2. For details and a full
exposition, see [9]. The Lax operators without spectral parameter are

L(p, q) = p · Ĥ +X(q) X(q) = i
∑
ρ∈
+

g|ρ| (ρ · Ĥ )x(ρ · q)ŝρ (4.1)

M(q) = i

2

∑
ρ∈
+

g|ρ||ρ|2 y(ρ · q) ŝρ − i

2

∑
ρ∈
+

g|ρ||ρ|2 y(ρ · q)× I (4.2)

in which I is the identity operator and {ŝα, α ∈ 
} are the reflection operators of the root
system. In contrast with {šα} operators (2.26), which act in function space, {ŝα} act on a set of
R
r vectors R = {µ(k) ∈ R

r , k = 1, . . . , d}, permuting them under the action of the reflection
group. The vectors in R form a basis for the representation space V of dimension d. The
operator M satisfies the relation∑

µ∈R
Mµν =

∑
ν∈R

Mµν = 0 (4.3)

which is essential for deriving quantum conserved quantities. The matrix elements of the
operators {ŝα, α ∈ 
} and {Ĥj , j = 1, . . . , r} are defined as follows:

(ŝρ)µν = δµ,sρ(ν) = δν,sρ(µ) (Ĥj )µν = µjδµν ρ ∈ 
 µ, ν ∈ R. (4.4)

The form of the function x depends on the chosen potential, and the function y is defined
by (2.12), (2.13). Note that these relations are only valid for the degenerate potentials (2.3).

The underlying idea of the Lax operator L, (4.1), is quite simple. As seen from (4.9), L
is a ‘square root’ of the Hamiltonian. Thus one part of L contains p, which is not associated
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with roots, and another part contains x(ρ · q), a ‘square root’ of the potential V (ρ · q),
which being associated with a root ρ is therefore accompanied by the reflection operator ŝρ .
Another explanation is the factorized Hamiltonian H (2.5). We obtain, roughly speaking,
L ∼ √

H ∼ p + i ∂W
∂q
ŝ and the property of reflection ŝ2 = 1 explains the sign change in the

first term in (2.5).
It is straightforward to show that the quantum Lax equation

d

dt
L = i[H, L] = [L,M] (4.5)

is equivalent to the quantum equations of motion derived from the Hamiltonian (2.7). From
this it follows that
d

dt
(Ln)µν = i[H, (Ln)µν] = [Ln,M]µν =

∑
λ∈R
((Ln)µλMλν −Mµλ(L

n)λν) n = 1, . . . .

(4.6)

Thanks to the property of the M operator (4.3)∑
µ∈R

Mµν =
∑
ν∈R

Mµν = 0

we obtain quantum conserved quantities as the total sum (Ts) of all the matrix elements of
Ln†:

Qn = Ts(Ln) ≡
∑
µ,ν∈R

(Ln)µν [H,Qn] = 0 n = 1, . . . . (4.7)

Independent conserved quantities appear at such a power n that

n = 1 + exponent (4.8)

of each root system. These are the degrees at which independent Coxeter invariant polynomials
exist. There are r exponents for each root system 
 of rank r . Thus we have r independent
conserved quantities in Calogero–Moser models. We list in table 2 these powers for each
root system. In particular, the power 2 is universal to all the root systems and the quantum
Hamiltonian (2.7) is given by

H = 1

2CR
Ts(L2) + const (4.9)

where the constantCR is the quadratic Casimir invariant, which depends on the representation.
It is defined by

Tr(Ĥj Ĥk) ≡
∑
µ∈R

(Ĥj Ĥk)µµ =
∑
µ∈R

µjµk = CR δjk. (4.10)

Some remarks are in order.

(1) The Lax pair is Coxeter covariant:

L(sρ(p), sρ(q))µν = L(p, q)µ′ν ′ M(sρ(q))µν = M(q)µ′ν ′

µ′ ≡ sρ(µ) ν ′ ≡ sρ(ν)
(4.11)

which ensures the Coxeter invariance of the conserved quantities.
(2) Lax pairs can be written down in various representations and the quantum conserved

quantities Qn do depend on the representations, in general. If necessary, we denote by
QR
n the explicit representation dependence.

† This type of conserved quantity is known for Ar models [16, 18].
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(3) The availability of plural representations of the Lax pair and the conserved quantities is
essential for the completeness of the set of conserved quantities as polynomials of the
momentum operators. For example, let us consider the case of Dr with even r , which
has two independent conserved quantities at power r (see table 2). At least two different
representations of the Lax pair are necessary in order to represent them in the form of (4.7).
Those based on the vector and the (anti-) spinor representations give two independent
conserved quantities. For the D4 case, we obtain

Qv
4 = 2

4∑
j=1

p4
j Qs

4 −Qa
4 = 24

4∏
j=1

pj (4.12)

in which v, s and a stand for the vector, spinor and anti-spinor representations and we have
set g = 0 for simplicity. If two conserved quantities are independent for zero coupling
constants, surely they are so at non-vanishing couplings. Here we have used an explicit
parametrization of the Dr root system:

Dr root system: 
 = {±ej ± ek, j < k = 1, . . . , r|ej ∈ R
r , ej · ek = δjk}. (4.13)

(4) If a representation R contains a vector µ and its negative −µ at the same time, then we
have Ts(Lodd) = 0. In such a case the corresponding Lie algebra representations are
called real. In order to construct the odd-power conserved quantities appearing in Ar for
all r ,Dr for odd r ,E6 and I (m) for oddm, we need a Lax pair in non-real representations.
For Ar all the fundamental representations corresponding to the fundamental weights λj ,
j = 1, . . . , r , except for the middle one λ(r+1)/2 for odd r are non-real. For Dr with
odd r , the spinor and anti-spinor representations are non-real. For E6 the 27 and 27 are
non-real. I2(m) is the symmetry group of a regularm-sided polygon. The set ofm vectors
representing the vertices of the regular m-gon to be denoted by Rm (B.3), provides a
non-real representation when m is odd.

(5) In appendix B we list for each root system how the full set of independent conserved
quantities is obtained by choosing proper representations of the Lax pair.

4.2. Rational potential with harmonic force

The quantum Lax pair for the type V models needs a separate formulation. The explicit form
of the Hamiltonian is

H = 1

2
p2 +

1

2
ω2q2 +

1

2

∑
ρ∈
+

g|ρ|(g|ρ| − 1)
|ρ|2
(ρ · q)2 − E0. (4.14)

The canonical equations of motion are equivalent to the following Lax equations for L±:

d

dt
L± = i[H, L±] = [L±,M] ± iωL± (4.15)

in which (see section 4 of [7]) M is the same as before (4.2), and L± and Q are defined by

L± = L± iωQ Q = q · Ĥ (4.16)

with L and Ĥ as earlier (4.1), (4.4). If we define Hermitian operators L1 and L2 by

L1 = L+L− L2 = L−L+ (4.17)

they satisfy Lax-like equations

L̇k = [Lk,M] k = 1, 2. (4.18)
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From these we can construct conserved quantities

Ts(Lnj ) j = 1, 2 n = 1, 2, . . . (4.19)

as before. Such quantum conserved quantities have been previously reported for models based
onAr root systems [16,18]. It should be remarked that Ts(Ln2) is no longer the same as Ts(Ln1)
due to quantum corrections. It is elementary to check that the first conserved quantities give
the Hamiltonian (4.14)

H ∝ Ts(L1) = Ts(L2) + const. (4.20)

This then completes the presentation of the quantum Lax pairs and quantum conserved
quantities for all of the quantum Calogero–Moser models with non-elliptic potentials.

5. Algebraic construction of excited states I

In this section we show that all the excited states of the type V Calogero–Moser models can
be constructed algebraically. Later in section 7 we show the same results in terms of the A
operators to be introduced in section 6. The main result is surprisingly simple and can be stated
universally, as follows.

Corresponding to each partition of an integer N which specifies the energy level (3.12)
into the sum of the degrees of Coxeter invariant polynomials (3.13), we have an eigenstate of
the Hamiltonian Ĥ with eigenvalue ωN + E0:

r∏
j=1

(B+
fj
)nj eW N =

r∑
j=1

njfj nj ∈ Z+ (5.1)

in which the integers {fj }, j = 1, . . . , r , are listed in table 2. They exhaust all the excited
states. In other words the above states give the complete basis of the Fock space. The creation
operators B+

fj
and the corresponding annihilation operators† B−

fj
are defined in terms of the

Lax operators L± (4.16) as follows:

B±
fj

= Ts(L±)fj j = 1, . . . , r. (5.2)

They are Hermitian conjugate to each other

(B±
fj
)† = B∓

fj
(5.3)

with respect to the standard Hermitian inner product of the states defined in PW:

(ψ, ϕ) =
∫

PW
ψ∗(q)ϕ(q) dq. (5.4)

We will show later in section 6, (6.15), that the creation (annihilation) operators commute
among themselves:

[B+
k , B

+
l ] = [B−

k , B
−
l ] = 0 k, l ∈ {fj | j = 1, . . . , r} (5.5)

so the state (5.1) does not depend on the order of the creation.
The proof is very simple. By using (4.15) we obtain

d

dt
(L±)n = i[H, (L±)n] = [(L±)n,M] ± inω(L±)n (5.6)

from which

[H, B±
n ] = ±nωB±

n (5.7)

† We adopt the notation by Olshanetsky and Perelomov [5, 12].
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follows after taking the total sum. This simply says thatB±
n creates (annihilates) a state having

energy nω. In other words, we have

Ĥ
r∏
j=1

(B+
fj
)nj eW =

(
E0 + ω

r∑
k=1

nkfk

) r∏
j=1

(B+
fj
)nj eW.

Moreover, it is trivial to show that∑
ν∈R
(L−)µν eW =

(
p · µ− iωq · µ + i

∑
ρ∈
+

ρ · µ
ρ · q

)
eW = µ ·

(
p + i

∂W

∂q

)
eW = 0 (5.8)

which implies that the ground state is annihilated by all the annihilation operators

B−
fj

eW = 0 j = 1, . . . , r. (5.9)

Some remarks are in order.

(1) In most cases the energy levels are highly degenerate. The above basis is neither orthogonal
nor normalized.

(2) The independence of the creation–annihilation operators can also be shown in a way similar
to that of the conserved quantities. As with the conserved quantities, plural representations
are necessary to define the full set of creation–annihilation operators in some models. This
aspect will be discussed in later sections in connection with the A operators.

(3) Reflecting the universality of the first exponent, f1 = 2, the creation and annihilation
operators of the least quanta, 2ω, exist in all the models. They form an sl(2,R) algebra
together with the Hamiltonian Ĥ:

[Ĥ, b±
2 ] = ±2ωb±

2 [b+
2 , b

−
2 ] = −ω−1Ĥ (5.10)

in which b±
2 are normalized forms of B±

2 :

b±
2 =

∑
µ,ν∈R

(L±)2µν/(4ωCR). (5.11)

The sl(2,R) algebra was discussed by many authors (see, e.g., [12,17,21,30] and others)
in connection with the models based on classical root systems. We will show later in
section 7.2 that the states created by B+

2 (b+
2 ) only can be expressed by the Laguerre

polynomial:

(b+
2 )
n eW = n!L(Ẽ0−1)

n (ωq2)eW Ẽ0 ≡ E0/ω. (5.12)

It is trivial to verify that L(Ẽ0−1)
n (ωq2) is an eigenfunction of H̃ (3.5)

H̃L(Ẽ0−1)
n (ωq2) = 2nωL(Ẽ0−1)

n (ωq2). (5.13)

The normalization of the state

||(b+
2 )
n eW||2 = n!N0/F(n + Ẽ0) N0 ≡ ||eW||2F(Ẽ0) (5.14)

is also dictated by the sl(2,R) relations. The Laguerre polynomial wavefunctions appear
as ‘radial’ wavefunctions in all cases [31]. This will be shown explicitly for for the rank
two models given in section 7.3.

(4) As is emphasized by Perelomov [12] and Gambardella [30] the sl(2,R) algebra and the
corresponding Laguerre wavefunctions are more universal than Calogero–Moser models.
They arise when the potentials are homogeneous functions in q of degree −2 with the
confining harmonic force.
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(5) The operators {Qn} and {B±
n } do not form a Lie algebra. They satisfy interesting nonlinear

relations, for example,

[[B+
n , b

−
2 ], b+

2 ] = nB+
n [[B−

n , b
+
2 ], b−

2 ] = nB−
n . (5.15)

This tells us, for example, that, although B+
n and b+

2 create different units of quanta n and
2, they are not independent:

[B+
n , b

−
2 ] �= 0 �= [B−

n , b
+
2 ].

Clarification of the algebraic structure (5.15) for each root system is desired.

6. � operators

In this section we will show the equivalence of the quantum conserved quantities obtained in the
Lax operator formalism of section 4 and those derived in the ‘commuting differential operators’
formalism initiated by Dunkl [10] and followed by many authors. Again the equivalence is
universal, applicable to the models based on any root systems. We propose to call the operators
in the latter approach simply ‘A operators’, since they are essentially the same as theL operator
in the Lax pair formalism and they are not mutually commuting, as we will show presently,
when the interaction potentials are trigonometric (hyperbolic) (6.14). Although these two
formalisms are formally equivalent, the A operator formalism has many advantages over the
Lax pair one. Roughly speaking, the ‘vector-like’ objects Aµ are easier to handle than the
matrix Lµν .

Let us fix a representation R of the Coxeter groupG
 and define for each element µ ∈ R
the following differential-reflection operator:

Aµ = A · µ = p · µ + i
∑
ρ∈
+

g|ρ| (ρ · µ) x(ρ · q)šρ µ ∈ R. (6.1)

It is linear in µ and Coxeter covariant

Aµ+ν = Aµ + Aν šρAµšρ = Asρ(µ) ∀ρ ∈ 
. (6.2)

They are Hermitian operators, A†
µ = Aµ, with respect to the standard inner product for the

states (5.4).
It is straightforward to show that the quantum conserved quantities Qn derived in the

previous section (4.7) can be expressed as polynomials in the A operators as follows:

Qnψ =
∑
µ,ν∈R

(Ln)µνψ =
(∑
µ∈R

Anµ

)
ψ (6.3)

in which ψ is an arbitrary Coxeter invariant state, šρψ = ψ . This also illustrates the Coxeter
invariance of Qn clearly, since šρ(

∑
µ∈R A

n
µ)šρ = ∑

µ∈R A
n
sρ(µ)

= ∑
µ∈R A

n
µ. For n = 1 this is

trivial, since ∑
ν∈R
(L)µνψ =

(
p · µ + i

∑
ρ∈
+

g|ρ| (ρ · µ) x(ρ · q)
∑
ν∈R
(ŝρ)µν

)
ψ

=
(
p · µ + i

∑
ρ∈
+

g|ρ| (ρ · µ) x(ρ · q)šρ
)
ψ = Aµψ (6.4)

in which
∑

ν∈R(ŝρ)µν = 1 and šρψ = ψ are used. Let us assume that∑
ν∈R
(Ln)µνψ = Anµψ (6.5)
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is correct, then we obtain∑
ν∈R
(Ln+1)µνψ =

∑
λ,ν∈R

Lµλ(L
n)λνψ =

∑
λ∈R

LµλA
n
λψ

=
∑
λ∈R

(
p · µδµλ + i

∑
ρ∈
+

g|ρ| (ρ · µ) x(ρ · q)(ŝρ)µλ
)
Anλψ.

In the second summation only such λ as λ = sρ(µ) contribute and we find

Ansρ(µ)ψ = (šρA
n
µšρ)ψ = šρA

n
µψ.

Thus we arrive at∑
ν∈R
(Ln+1)µνψ = An+1

µ ψ (6.6)

and the equivalence of the two expressions of the conserved quantity (6.3) is proved.
Commutation relations among A operators can be evaluated in a manner similar to those

appearing in the Lax pair [7,9], that is, by decomposing the roots into two-dimensional sub-root
systems. We obtain

[Aµ, Aν] = −a2
∑

ρ,σ∈
+

g|ρ|g|σ | (ρ · µ) (σ · ν)[šρ, šσ ] ×




0 rational

−1 hyperbolic

1 trigonometric.

(6.7)

One important use of the A operators is the proof of involution of quantum conserved quantities.
For type I models Heckman [21] gave a universal proof based on the commutation relation (6.7):

[Qn,Qm]ψ =
∑
µ,ν∈R

[Anµ, A
m
ν ]ψ = 0 rational model. (6.8)

This was the motivation for the introduction of the commuting differential-reflection operators
by Dunkl [10]. In fact, the operators of Dunkl and Heckman were the similarity transformation
of Aµ by the ground state wavefunction eW:

Ãµ = e−WAµeW = p · µ + i
∑
ρ∈
+

g|ρ|
(ρ · µ)
(ρ · q) (šρ − 1). (6.9)

As for type V models, we define A± corresponding to L± (4.16):

A±µ = A± · µ = p · µ± iω(q · µ) + i
∑
ρ∈
+

g|ρ|
(ρ · µ)
(ρ · q) šρ µ ∈ R. (6.10)

They are linear in µ, Coxeter covariant and Hermitian conjugates of each other with respect
to the standard inner product (5.4):

šρA
±
µ šρ = A±sρ(µ) (A±µ)

† = A∓µ . (6.11)

The conserved quantities are expressed as polynomials in A± operators:

Ts(Ln1)ψ =
∑
µ,ν∈R

(L+L−)nµνψ =
∑
µ∈R

(A+
µA

−
µ)
nψ

Ts(Ln2)ψ =
∑
µ,ν∈R

(L−L+)nµνψ =
∑
µ∈R

(A−µA
+
µ)
nψ.

(6.12)

Likewise the creation and annihilation operators B±
n (5.2) are expressed as

B±
n ψ = Ts(L±)nψ =

∑
µ,ν∈R

(L±)µνψ =
∑
µ∈R

(A±µ)
nψ. (6.13)
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The commutation relations among A± operators are easy to evaluate, since A operators
commute in the rational potential models (6.7):

[A+
µ, A

+
ν ] = [A−µ, A

−
ν ] = 0 [A−µ, A

+
ν ] = 2ω

(
µ · ν +

∑
ρ∈
+

g|ρ| (ρ · µ) (ρ∨· ν)šρ
)
. (6.14)

From these it follows that the creation (annihilation) operators B±
n do commute among

themselves:

[B+
n , B

+
m]ψ = [B−

n , B
−
m ]ψ = 0. (6.15)

It is also clear that A±µ/
√

2ω are the ‘deformation’ of the creation (annihilation) operators of
the ordinary multicomponent harmonic oscillators. In fact we have

A+
µeW = 2iω(µ · q)eW and A−µeW = 0. (6.16)

In the next section we present an alternative scheme of algebraic construction of excited states of
type V models by pursuing the analogy that A± are the creation and annihilation operators of the
unit quantum. This method was applied to theAr models by Brink et al and others [15,17,18].

7. Algebraic construction of excited states II

7.1. Operator solution of the triangular Hamiltonian

In section 3.1, we have shown that an eigenfunction of H with eigenvalue Nω is given by

(PN(q) + P̃N−2(q))e
W (7.1)

in which PN(q) is a Coxeter invariant polynomial in q of homogeneous degreeN and P̃N−2(q)

is a Coxeter invariant polynomial in q of degreeN−2 and lower. The non-leading polynomial
P̃N−2(q) is completely determined by the leading one PN(q) due to the triangularity. This
solution can be written in an operator form as follows.

Suppose PN(q) is expressed as

PN(q) =
∑
{µ}
c{µ}(q · µ1) . . . (q · µN) µj ∈ R c{µ}: const. (7.2)

We obtain a Coxeter invariant polynomial in the creation operators A+ by replacing q · µ by
A+
µ/(2iω):

PN(q) ⇒ 1

(2iω)N
PN(A

+).

This creates the above eigenfunction of H from the ground state:

1

(2iω)N
PN(A

+) eW = (PN(q) + P̃N−2(q))e
W. (7.3)

The proof is again elementary. By using the commutation relations among A± operators
it is straightforward to derive the explicit expression of the Hamiltonian in terms of A±:

H = 1

2CR

∑
µ∈R

A+
µA

−
µ +

∑
ρ∈
+

g|ρ|

(
ω +

1

2

|ρ|2
(ρ · q)2

)
(šρ − 1) (7.4)

in which the second term vanishes upon acting on a Coxeter invariant state. Next we obtain

1

2CR

∑
µ∈R

[A+
µA

−
µ, A

±
ν ] = [A±ν , S] ± ωA±ν S ≡

∑
ρ∈
+

g|ρ|šρ (7.5)
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which is an A operator version of (4.15). Since a commutator is a derivation, we obtain

1

2CR

∑
µ∈R

[A+
µA

−
µ, PN(A

+)] = [PN(A
+), S] +NωPN(A

+) (7.6)

in which the first term in rhs vanishes due to the Coxeter invariance of PN . Thus we arrive at
the desired commutation relation

[H, PN(A+)] = NωPN(A
+) +

∑
ρ∈
+

g|ρ|

[
1

2

|ρ|2
(ρ · q)2 , PN(A

+)

]
(šρ − 1) (7.7)

and the eigenvalue equation

HPN(A+) eW = NωPN(A
+) eW. (7.8)

Since the action of the creation operators on the ground state is

A+
µ1
. . . A+

µN
eW = [(2iω)N(q · µ1) . . . (q · µN) + lower powers of q] eW (7.9)

our assertion (7.3) is proved. It should be stressed that in this formalism the Coxeter invariance
of the polynomial P is important but not how it is obtained.

Like the above Hamiltonian (7.4), the A operator formulae of higher conserved
quantities (6.12) contain extra terms:

Ts(Ln1) =
∑
µ,ν∈R

(L+L−)nµν =
∑
µ∈R

(A+
µA

−
µ)
n + VT. (7.10)

Here VT stands for vanishing terms when they act on a Coxeter invariant state. The same is
true for most formulae derived in section 6.

7.2. States created by B+
2

Here we derive the explicit forms of the subseries of eigenstates obtained by multiple
applications of the least quanta creation operator B+

2 (5.2), or its normalized form b+
2 (5.11).

It is convenient to work with the similarity transformed operator

b̃+
2 = e−Wb+

2 eW = 1

4ωCR

∑
µ∈R

(Ã+
µ)

2 + VT (7.11)

in which

Ã+
µ = p · µ + 2iω(q · µ) + i

∑
ρ∈
+

ρ · µ
ρ · q (šρ − 1). (7.12)

Let f (u) be an arbitrary function of u ≡ ωq2, then it is Coxeter invariant. We find

Ã+
µf (u) = 2iω(q · µ)

(
1 − d

du

)
f (u) u ≡ ωq2 (7.13)

and

b̃+
2f (u) = −

[
u

(
1 − d

du

)2

− Ẽ0

(
1 − d

du

)]
f (u). (7.14)

Since b̃+
2 1 = Ẽ0 − u = L

(Ẽ0−1)
1 (u), we assume

(b̃+
2 )
n1 = n!L(Ẽ0−1)

n (u). (7.15)
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By using the Laguerre differential equation (3.21) and the recurrence formulae of the Laguerre
polynomial L(α)n (u),

u
d

du
L(α)n (u) = nL(α)n (u)− (n + α)L(α)n−1(u) (7.16)

nL(α)n (u) + (u− 2n− α + 1)L(α)n−1(u) + (n + α − 1)L(α)n−2(u) = 0 (7.17)

we can show

−
[
u

(
1 − d

du

)2

− Ẽ0

(
1 − d

du

)]
L(Ẽ0−1)
n (u) = (n + 1)L(Ẽ0−1)

n+1 (u). (7.18)

Thus the induction is proved and we arrive at (5.12). The orthogonality of the states

((B+
2 )
neW, (B+

2 )
meW) = 0 n �= m (7.19)

can be easily understood as the du part of the measure

e2W dr q = e−uuẼ0−1 du dH dH: angular part

is the proper weight function for the Laguerre polynomial L(Ẽ0−1)
n (u).

7.3. Explicit solutions of the rank two models

For rank two models, the Liouville integrability, or the involution of conserved quantities, is
automatically satisfied since the second conserved quantity is already obtained. For rank two
type V models, the complete set of orthogonal wavefunctions can be written down explicitly in
terms of separation of variables by using the Coxeter invariant polynomials. These are based
on the dihedral root systems I2(m), with A2

∼= I2(3) [31], B2
∼= I2(4) and G2

∼= I2(6) [32].
The Coxeter invariant polynomials exist at degree 2, i.e. q2 and m which is

m∏
j=1

(vj · q) (7.20)

where {vj } is a set of vectors given in (B.4). If we introduce the two-dimensional polar
coordinate system† for q

q = r(sin θ, cos θ) (7.21)

then the principal Weyl chamber is

PW : 0 < r2 < ∞ 0 < θ < π/m. (7.22)

The two Coxeter invariant variables read

q2 = r2
m∏
j=1

(vj · q) = 2
( r

2

)m
cosmθ (7.23)

and the latter variable varies over the full range, −1 < cosmθ < 1 in the PW. Thus solving
the eigenvalue equation for H̃ (3.6) by separation of variables in the polar coordinate system
is compatible with Coxeter invariance. We adopt as two independent variables

u ≡ ωr2 z ≡ cosmθ. (7.24)

The solutions consist of a Gegenbauer (Jacobi) polynomial in cosmθ multiplied by a Laguerre
polynomial inωr2. The former we have encountered in theA1 Sutherland problem, section 3.2,
and the latter in the A1 Calogero problem, sections 3.1 and 7.2.

† We believe no confusion arises here between the radial coordinate variable r and the rank of the root system r ,
which in this case is 2 of I2(m).
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Let us demonstrate this for oddmwith a single coupling constant and for evenmwith two
independent coupling constants, in parallel. In terms of the Coxeter invariant variables (7.24)
the I2(m) Hamiltonians take surprisingly simple forms:

H̃ = ωr
∂

∂r
− 1

2r

∂

∂r

(
r
∂

∂r

)
− m

r

{
g

1
2 (go + ge)

}
∂

∂r

− 1

2r2

[
∂2

∂θ2
+m

{
2g cotmθ

−g0 tan mθ
2 + ge cot mθ2

}
∂

∂θ

]

= − 2ω

[
u
∂2

∂u2
+ (Ẽ0 − u)

∂

∂u

]
− ωm2

2u

[
(1 − z2)

∂2

∂z2

+

({
0

go − ge

}
−
{

1 + 2g

1 + ge + go

}
z

)
∂

∂z

]
. (7.25)

The z part admits polynomial solutions

[
(1 − z2)

d2

dz2
+

({
0

go − ge

}
−
{

1 + 2g

1 + ge + go

}
z

)
d

dz

]
P

{ (g− 1
2 ,g−

1
2 )

(go− 1
2 ,ge− 1

2 )
}

A (z)

= A

(
A +

{
2g

ge + go

})
P

{ (g− 1
2 ,g−

1
2 )

(go− 1
2 ,ge− 1

2 )
}

A (z) (7.26)

in which A is the degree of the polynomial. After substituting them, the radial part of the
Hamiltonian H̃r reads

H̃r = −2ω

[
u

d2

du2
+ (Ẽ0 − u)

d

du
− m2

4u
A

(
A +

{
2g

ge + go

})]
. (7.27)

By similarity transformation in terms of umA/2 ∝ rmA, which is the radial part of the highest
term of the polynomial P (α,β)A (rm cosmθ), it reads

u−mA/2H̃ru
mA/2 = −2ω

[
u

d2

du2
+ (mA + Ẽ0 − u)

d

du
− mA

2

]
. (7.28)

This is the main part of the differential equation for the Laguerre polynomial (3.21):[
u

d2

du2
+ (mA + Ẽ0 − u)

d

du
− n

]
L(mA+Ẽ0−1)
n (u) = 0.

Thus the eigenstates of the Hamiltonian are obtained:

H̃ru
mA/2L(mA+Ẽ0−1)

n (u) = ω(2n +mA)umA/2L(mA+Ẽ0−1)
n (u) (7.29)

H̃umA/2L(mA+Ẽ0−1)
n (u)P

{ (g− 1
2 ,g−

1
2 )

(go− 1
2 ,ge− 1

2 )
}

A (z) = (ω(2n +mA) + E0)u
mA/2L(mA+Ẽ0−1)

n (u)P
{ (g− 1

2 ,g−
1
2 )

(go− 1
2 ,ge− 1

2 )
}

A (z).

(7.30)

It is instructive to note that the Hamiltonians Ĥ also look simple:

Ĥ = 1

2
ω2r2 − 1

2r

∂

∂r

(
r
∂

∂r

)
− 1

2r2

∂2

∂θ2
+
m2

2r2

{ g(g−1)
sin2 mθ

go(go−1)
4 cos2 mθ

2
+ ge(ge−1)

4 sin2 mθ
2

}
. (7.31)

Olshanetsky and Perelomov [5] obtained the above solutions starting from these formulae.
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8. Involution of conserved quantities

8.1. Universal proof of involution of quantum conserved quantities for type I–III models

Here we present a proof of involution of quantum conserved quantities {Qn} derived from the
universal Lax pair in section 4.1 for type I–III models. The proof is applicable to all models
based on any root systems. Though a universal proof of involution for type I models is given by
Heckman [21] as recapitulated in section 6, we believe the universal proof applicable to type II
and III models as well is new. It depends on a theorem by Olshanetsky and Perelomov [11].
Our own contribution is that we have provided a universal Lax pair and conserved quantities
satisfying all the requirements of the theorem.

Liouville’s theorem states the complete integrability as the existence of an involutive set
of conserved quantities as many as the degrees of freedom. We have already given conserved
quantities {Qn} (4.7) independent and as many as the degrees of freedom (see appendix B).
They have the following properties.

(1) Coxeter invariance

Qn(sρ(p), sρ(q)) = Qn(p, q) ∀ρ ∈ 
. (8.1)

(2) Qn(p, q) is a homogeneous polynomial of degree n in variables (p1, . . . , pr , x(ρ · q)).
(3) Scaling property for those of type I models:

IQn(κ
−1p, κq) = κ−n IQn(p, q) (8.2)

as a consequence of the above point.
(4) For type II and III models, the asymptotic behaviour near the origin:

Qn(p, q) = IQn(p, q)(1 + O(|q|)) for |q| → 0. (8.3)

We need to show the vanishing of

Jlm ≡ [Ql,Qm] (8.4)

which is a polynomial in {p} of degree s

s < l +m. (8.5)

Let us decompose Jlm into the leading part and the rest:

Jlm = J 0
lm + J rest

lm J 0
lm =

∑
cj1,...,js (q)pj1 , . . . , pjs (8.6)

and J rest
lm is a polynomial in {p} of degree less than s. From the Jacobi identity and conservation

[H,Ql(m)] = 0, we obtain

[H, Jlm] = 0. (8.7)

Considering the explicit form of the Hamiltonian (2.7) (ω = 0), the leading (i.e. of degree
s + 1 in {p}) part of [H, Jlm] arises only from the free part

[p2, J 0
lm]

and it vanishes if the following conditions are satisfied:∑
σ

∂

∂qt
ck1,...,ks (q) = 0 (8.8)

where the sum is taken over all permutations of indices σ(t, k1, . . . , ks) = (j1, . . . , js+1).
In [33] it is proved (lemma 2.5, p 407) that the system (8.8) has only polynomial solutions.
Then Olshanetsky and Perelomov argue that for type I models the scaling property tells
us that ck1,...,ks (κq) = κs−l−mck1,...,ks (q). Since s < l + m (8.5), it follows that the
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only polynomial solution satisfying the condition is the null polynomial. Thus we obtain
cj1,...,js (q) = 0 ⇒ J 0

lm = 0 and Jlm = 0. The same results follow for type II and III
models by considering the asymptotic behaviour for |q| → 0. Thus the involution of all
the conserved quantities {Qn} is proved. This result also implies the involution of classical
conserved quantities by taking the classical limit (h̄ → 0).

8.2. Rational models with the harmonic confining force

In this section we show the involution of quantum conserved quantities for the type V
models based on the root systems of classical Lie algebras. The method is a straightforward
generalization of that developed by Polychronakos on the Ar model. This is made possible
by the availability of the universal Lax pair formalism [7, 9], in particular the root-type
and minimal-type Lax pairs. We apply it to the models based on Br and Dr root systems.
For the rational potential, the Br , Cr and BCr models are equivalent. Let us choose
R = {±ej ∈ R

r | ej · ek = δjk} as the representation space of the Coxeter group consisting
of orthogonal vectors and their negatives. They are the set of short roots of Br and the set of
vector weights of Dr in the parametrization of roots given in (B.1) and (4.13), respectively.

The conserved quantities in the A operator form are given by

Qn = AQn + VT AQn ≡
r∑
j=1

(A+
j A

−
j )
n n = 1, . . . , r (8.9)

in which we abbreviate A±ej as A±j . In this case the commutation relations among A

operators (6.14) are greatly simplified thanks to the orthogonality of {ej }s and the explicit
forms of the roots:

[A−j , A
+
k ] = −2ωg̃(šjk − ¯̌sjk) (8.10)

in which

g̃ =
{
gL Br model

g Dr model
šjk ≡ šej−ek ¯̌sjk ≡ šej+ek . (8.11)

By repeating them we obtain

[A+
j A

−
j , A

+
k A

−
k ] = −2ωg̃[A+

j A
−
j , mjk] mjk ≡ šjk + ¯̌sjk = mkj j �= k (8.12)

[(A+
j A

−
j )
n, A+

k A
−
k ] = −2ωg̃[(A+

j A
−
j )
n,mjk] = +2ωg̃[(A+

k A
−
k )
n,mjk] (8.13)

[A+
j A

−
j , (A

+
k A

−
k )
m] = +2ωg̃[(A+

k A
−
k )
m,mjk] = −2ωg̃[(A+

j A
−
j )
m,mjk]. (8.14)

Here and later the identity [(A+
k A

−
k )
t , mjk] = −[(A+

j A
−
j )
t , mjk] is used repeatedly. Then (8.13)

leads to

[(A+
j A

−
j )
n, (A+

k A
−
k )
m] = +2ωg̃

m−1∑
t=0

((A+
k A

−
k )
t+nmjk(A

+
k A

−
k )
m−t−1 − (A+

k A
−
k )
tmjk(A

+
k A

−
k )
m+n−t−1)

(8.15)

and (8.14) to

[(A+
j A

−
j )
n, (A+

k A
−
k )
m] = −2ωg̃

n−1∑
t=0

((A+
j A

−
j )
t+mmjk(A

+
j A

−
j )
n−t−1 − (A+

j A
−
j )
tmjk(A

+
j A

−
j )
m+n−t−1).

(8.16)
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Summing over j and k and adding (8.15) and (8.16) together with the interchange of the
dummy indices j ↔ k in the latter produces

2[AQn,
AQm] = +2ωg̃

n+m−1∑
t=0

∑
j,k

((A+
k A

−
k )
tmjk(A

+
k A

−
k )
n+m−t−1−(A+

k A
−
k )
tmjk(A

+
k A

−
k )
n+m−t−1) = 0.

(8.17)

Thus we obtain

[Qn,Qm] = 0 n,m = 1, . . . , r (8.18)

on the Fock space of Coxeter invariant states.

8.3. Lax pair with spectral parameter

In the theory of classical Calogero–Moser models, the Lax pair with spectral parameter (ξ )
plays an important role, in particular, in elliptic potential models [6–8, 34] for derivation of
spectral curves etc. In quantum theory, however, the meaning and use of the spectral parameter
are yet to be established, partly because of the underdeveloped stage of the quantum models
with elliptic potentials. Here we point out a small use of the quantum Lax pair with spectral
parameter in the quantum model with trigonometric potential. Namely, it accounts for the
useful trick by Polychronakos [15] for the proof of the involution of conserved quantities in
the trigonometricAr model. (Now we have a universal proof of involution for type I, II and III
models; see the previous section.)

From the theory of the generalized Lax pair [7] and its quantum version for degenerate
potential models [9], we find that theL operator can contain one additional complex parameter
ξ :

Lξ = p · Ĥ +Xξ Xξ = i
∑
ρ∈
+

g|ρ| (ρ · Ĥ )(x(ρ · q)− x(ρ∨· Ĥ ξ))ŝρ (8.19)

in which the function x is given in table 1 for the degenerate potentials. With the same M
operator as before, the quantum equations of motion can be written in a matrix form:

d

dt
Lξ = i[H, Lξ ] = [Lξ ,M]. (8.20)

In other words, the ξ -dependent part decouples. This allows us to define a one-parameter
family of conserved quantities

ξQn = Ts(Lξ )n n = 1, 2, . . . (8.21)

which turns out to be a ξ -dependent sum of Qn and the lower-order conserved quantities
Qm, m < n. A special limit ξ → −i∞ in the trigonometric models provides a convenient
combination which allows easy proof of involution in theAr model. (In the rational model, the
limit reduces to the Lax pair without spectral parameter. In the hyperbolic models this limit
is ill defined.) In the rest of this section we consider only the trigonometric potential models.
Let us denote the limiting Lξ operator by L∞, which reads

L∞ = L + a
∑
ρ∈
+

g|ρ||ρ · Ĥ |ŝρ (8.22)

and the corresponding A operators are given by

A∞µ = Aµ + tµ tµ = a
∑
ρ∈
+

g|ρ||ρ · µ|šρ . (8.23)
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For the Ar model in the vector representation R = {µj ∈ R
r , j = 1, . . . , r + 1}, with the

standard normalization of roots ρ2 = 2, the above expression simplifies to

A∞j = Aj + tj tj = ag
∑
k �=j

šjk (8.24)

in which as before we abbreviate Aµj as Aj and šjk ≡ šµj−µk . These are the operators introduced
in [15], Aj ↔ πj and A∞j ↔ π̃j . The Lax operator with the spectral parameter gives an
‘explanation’ for the rather ad hoc introduction of π̃j . It is straightforward to show

[Aj , Ak] = [tj , tk] (8.25)

which leads to

[A∞j , A
∞
k ] = [A∞j , tk] + [tj , A

∞
k ] = 2ag[A∞j , šjk] = −2ag[A∞k , šjk]. (8.26)

This has the same structure as (8.12) in the previous section. By repeating the same argument
we arrive at [15]

[∞Qn,
∞Qm] = 0 n,m = 1, . . . , r ∞Qn =

r∑
j=1

(A∞j )
n (8.27)

which then imply the involution of the conserved quantities obtained from the original L
operator

[Qn,Qm] = 0 n,m = 1, . . . , r. (8.28)

9. Summary and comments

We have discussed various issues related to quantum integrability of Calogero–Moser models
based on all root systems. These are construction of quantum conserved quantities and a unified
proof of their involution, the relationship between the Lax pair and the differential-reflection
(Dunkl) operator formalisms, construction of excited states by creation operators etc. They are
mainly generalizations of the results known for the models based on Ar root systems, which
are shown to apply to the models based on any root systems. There are some interesting works
discussing the integrability issues of the models based on other classical root systems and the
exceptional ones including the non-crystallographic models [32, 35–38].

Here we list some comments on interesting issues which are not treated in this paper. The
structure and properties of the eigenfunctions of the trigonometric potential models, which are
generalizations of the Jack polynomials [25–28], will be discussed in future publications. A
comprehensive treatment of Liouville integrability of rational models with harmonic force is
required. Our starting point, the factorized Hamiltonian (2.5) for degenerate potential models,
is closely related with supersymmetry and shape invariance [38, 39]. Further investigation in
this direction is a future problem. It is a great challenge to formulate various aspects of quantum
Calogero–Moser models with elliptic potentials; the Lax pair, the differential-reflection
operators [40, 41], conserved quantities, supersymmetry and excited state wavefunctions.
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Appendix A. Root systems

In this appendix we recapitulate the rudimentary facts of the root systems and reflections to
be used in the main text. The set of roots 
 is invariant under reflections in the hyperplane
perpendicular to each vector in 
. In other words,

sα(β) ∈ 
 ∀α, β ∈ 
 (A.1)

where

sα(β) = β − (α∨ · β)α α∨ ≡ 2α/|α|2. (A.2)

The set of reflections {sα, α ∈ 
} generates a group G
, known as a Coxeter group, or finite
reflection group. The orbit of β ∈ 
 is the set of root vectors resulting from the action of the
Coxeter group on it. The set of positive roots
+ may be defined in terms of a vector U ∈ R

r ,
with α · U �= 0,∀α ∈ 
, as those roots α ∈ 
 such that α · U > 0. Given 
+, there is a
unique set of r simple roots( = {αj , j = 1, . . . , r} defined such that they span the root space
and the coefficients {aj } in β = ∑r

j=1 ajαj for β ∈ 
+ are all non-negative. The highest root
αh, for which

∑r
j=1 aj is maximal, is then also determined uniquely. The subset of reflections

{sα, α ∈ (} in fact generates the Coxeter group G
. The products of sα , with α ∈ (, are
subject solely to the relations

(sαsβ)
m(α,β) = 1 α, β ∈ (. (A.3)

The interpretation is that sαsβ is a rotation in some plane by 2π/m(α, β). The set of positive
integers m(α, β) (with m(α, α) = 1,∀α ∈ () uniquely specifies the Coxeter group. The
weight lattice >(
) is defined as the Z-span of the fundamental weights {λj }, j = 1, . . . , r ,
defined by

α∨
j · λk = δjk αj ∈ (. (A.4)

The root systems for finite reflection groups may be divided into two types:
crystallographic and non-crystallographic. Crystallographic root systems satisfy the additional
condition

α∨ · β ∈ Z ∀α, β ∈ 
 (A.5)

which implies that the Z-span of ( is a lattice in R
r and contains all roots in 
. We call this

the root lattice, which is denoted by L(
). These root systems are associated with simple
Lie algebras: {Ar, r � 1}, {Br, r � 2}, {Cr, r � 2}, {Dr, r � 4}, E6, E7, E8, F4 and
G2. The Coxeter groups for these root systems are called Weyl groups. The remaining non-
crystallographic root systems are H3 and H4, whose Coxeter groups are the symmetry groups
of the icosahedron and four-dimensional 600-cell, respectively, and the dihedral group of order
2m, {I2(m),m � 4}.

Appendix B. Conserved quantities

Here we list for each root system how the full set of independent conserved quantities is
obtained by choosing proper representations of the Lax pair. We choose those of the lowest
dimensionality for the convenience of practical calculation. Of course there are many other
choices of representations giving equally good sets of conserved quantities. The independence
of the conserved quantities can be easily verified by considering the free limit: g|ρ| → 0.

(1) Ar . For all powers, the vector representation (r + 1 dimensions) is enough.
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(2) Br . For all powers, the representation consisting of short roots {±ej : j = 1, . . . , r} (2r
dimensions) is enough. Here we adopt the following explicit parametrization of the Br
root system:

Br root system:
 = {±ej ± ek,±ej , j, k = 1, . . . , r|ej ∈ R
r , ej · ek = δjk}. (B.1)

(3) Cr . For all powers, the representation consisting of long roots {±2ej : j = 1, . . . , r} (2r
dimensions) is enough. The following parametrization of the root system is used:

Cr root system:
 = {±ej ± ek,±2ej , j, k = 1, . . . , r|ej ∈ R
r , ej · ek = δjk}. (B.2)

(4) Dr : For all even powers, the vector representation (2r dimensions) is enough. For the
additional one occurring at power r , the (anti-) spinor representation (2r−1 dimensions)
would be necessary. They are minimal representations.

(5) E6. For all powers, the 27- (or 27-) dimensional representation of the Lie algebra is
enough. They are minimal representations.

(6) E7. For all powers, the 56-dimensional representation of the Lie algebra is enough. This
is a minimal representation.

(7) E8. For all powers, the 240-dimensional representation consisting of all the roots is
enough. This is not the same as the adjoint representation of the Lie algebra.

(8) F4. For all powers, either of the 24-dimensional representations consisting of all the long
roots or the short roots is enough. These are not Lie algebra representations.

(9) G2. For all powers, either of the six-dimensional representations consisting of all the long
roots or the short roots is enough. These are not Lie algebra representations.

(10) I2(m). For both powers 2 and m, the representation consisting of the vertices Rm of the
regular m-gon is sufficient,

Rm = {(cos(2k/m + t0), sin(2k/m + t0)) ∈ R
2| k = 1, . . . , m} (B.3)

in which t0 = 0 (1/2m) form even (odd). Another set, Vm, is used in 7.3. Here, Vm is the
set of vectors with ‘half’ angles of the roots (see (2.10)) given by

Vm = {vj = (cos((2j − 1)π/2m), sin((2j − 1)π/2m)) ∈ R
2|j = 1, . . . , m}. (B.4)

(11) H3. For all powers, the representation consisting of all 30 roots is enough.
(12) H4. For all powers, the representation consisting of all 120 roots is enough.
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